
MySQL For Frappe Devs

Credits

This is a "Stripped down" version of CMU's
"Database Systems" course which is
available online for free.

Check it out:
https://15445.courses.cs.cmu.edu/fall2023/

P.S. - Professor of this class is fucking
awesome!

https://15445.courses.cs.cmu.edu/fall2023/

Disclaimer

This slide deck was used for internal training. You can not
get the same experience or “knowledge transfer” by just
reading the slides.

- If you’ve seen this before, then you can probably use it
to recall something.

- If you’re seeing this for the first time, then you should
use this deck as a “teaser” and consider self-studying
the relevant concepts.

Warning: abstraction alert

● Conceptual abstraction of SQL database <- Most DB users
● high level implementation <- Where we want to be
● low level implementation details <- MySQL devs

A LOT of hand-wavy explanations incoming.

Outline

● Storage
● Bufferpool
● Indexing (B+Tree)
● Query planner and execution
● Concurrency, locking and MVCC
● Logging and recovery

Storage - RAM vs Disk

Device Latency (ns)

DRAM 100

SSD 16,000

HDD 2,000,000

Storage - RAM vs Disk

Device Latency (ns) Relative

DRAM 100 1 second

SSD 16,000 2.6 minutes

HDD 2,000,000 5.5 hours

Disk Oriented Database

MySQL Page - 16KB

InnoDB’s “Index-Organized” structure

Storing individual tuple (aka row)

Datatypes and their representation

● Integers / Float -> same as C
● VARCHAR -> 2 or 3 byte header + actual data*
● Date(time) - encoding each parts as integer
● Text/Long Text - pointer to some other “overflow page”
● Decimal - fixed precision number
● UUID - 16 bytes binary data.

* - read UTF-8 blog by Joel Spolsky

“Text” representation

Practical Implications

● “Max row size reached” -
https://docs.erpnext.com/docs/user/manual/en/maximum-numb
er-of-fields-in-a-form

● Our config:
https://github.com/frappe/press/blob/master/press/playboo
ks/roles/mariadb/templates/mariadb.cnf

https://docs.erpnext.com/docs/user/manual/en/maximum-number-of-fields-in-a-form
https://docs.erpnext.com/docs/user/manual/en/maximum-number-of-fields-in-a-form
https://github.com/frappe/press/blob/master/press/playbooks/roles/mariadb/templates/mariadb.cnf
https://github.com/frappe/press/blob/master/press/playbooks/roles/mariadb/templates/mariadb.cnf

Outline

● Storage
● Bufferpool
● Indexing (B+Tree)
● Query planner and execution
● Concurrency, locking and MVCC
● Logging and recovery

Buffer pool

Page Table

● hashtable that keeps
track of pages

● Track dirty pages
● metadata about accesses

and locking

● Bufferpools have fixed size
● What happens when you run out memory?
● Enter LRU-K

Bufferpool size and eviction

Practical Implications

● Size specified in our config: mariadb.cnf
● How do you recommend DB server size?
● Lets `monitor` some of this:

○ Bufferpool size
○ BP miss ratio
○ LRU Sub-chain churn

https://github.com/frappe/press/blob/master/press/playbooks/roles/mariadb/templates/mariadb.cnf

Questions

● How backups affect bufferpool?
● Why is swap bad?
● What should be the size of DB server?

Outline

● Storage
● Bufferpool
● Indexing (B+Tree)
● How joins Work
● Query planner and execution
● Concurrency, locking and MVCC
● Logging and recovery

Indexes - B+Tree

● Every index is B+Tree
● Actual table is just “primary” index, leaf nodes = data.

Indexes - B+Tree

“Value”

- Primary key index -> Actual tuple data
- Secondary index -> Primary key

Multicolumn index?

● Just concatenate columns
● E.g.

○ Index of first name might contain: “Alice”, “Bob”, “Zed”
○ Index of last name might contain: “Burger”, “Chains”, “Zodd”
○ Multi col index of first and last name is just concatenation

(“Alice”, “Chains”), (“Bob”, “Burger”), (“Zed”, “Zodd”)

Indexes - Visualization

DEMO

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

Practical Implications

● Primary key naming matters - #25309
● Multi-col index -> works with prefix only.

https://github.com/frappe/frappe/pull/25309

Outline

● Storage
● Bufferpool
● Indexing (B+Tree)
● Query planner and execution
● Concurrency, locking and MVCC
● Logging and recovery

Joining Tables - Naive Join

for o in outer_table:

for i in inner_table:

if o.name = i.parent:

yield (o, i)

Joining Tables - Block nested join

for o_page in outer_table:

for i_page in inner_table:

for o_row in o_page:

for i_row in i_page:

if o.name = i.parent:

yield (o, i)

Joining Tables - Index nested join

for o in outer_table:

for i in Index(i.parent = o.name):

yield (o, i)

Joining Tables - Sort merge join

● Sort both tables
● Use two pointers and yield matching rows

ID name

1 Admin

2 Garret

3 Bob

ID role

1 Admin

2 System

3 Guest

1 System

2 Sales

Joining Tables - Sort merge join

● Sort both tables
● Use two pointers and yield matching rows

ID name

1 Admin

2 Garret

3 Bob

ID role

1 Admin

1 System

2 Sales

2 System

3 Guest

Joining Tables - Hash Join

● Recent addition, not enabled by default.
● Also: “Adaptive hash index”

“Conceptual” Execution order

1. FROM
2. JOIN
3. WHERE
4. GROUP
5. HAVING
6. SELECT / AGGREGATE
7. ORDER
8. OFFSET
9. LIMIT

Actual Execution order

???

What’s the ideal execution ordering?

SELECT *

from `tabItem`;

What’s the ideal execution ordering?

SELECT *

from `tabItem`

order by `modified`

limit 20;

What’s the ideal execution ordering?

SELECT *

from `tabStock Ledger Entry`

where

item_code = ‘X’

and warehouse = ‘Y’

and posting_datetime > ‘2024-01-01’

order by `posting_datetime` desc

limit 1;

Execution model - Iterators

select i.name

from item i

join item_group ig

on ig.group = ig.id

where ig.name = “Products”

and i.enable = 1

Execution model - Iterators

select i.name

from item i

join item_group ig

on ig.group = ig.id

where ig.name = “Products”

and i.enable = 1

for i in item:
yield i

for ig in item_group:
yield ig

for x in left:
for y in right:

if x.group == y.id:
yield (x, y)

for row in result:
if row.name == “Products”:

yield row

for row in result:
if row.enabled == 1:

yield row

for row in result:
yield row.name

scan scan

join

filter

filter

project

Execution model - Sequential scan

“Full table scan”

for page in pages:

for row in page:

if matches(row, conditions):

yield row

for pk in Index(predicate):

row = get_record(pk)

if match(row, other_conditions):

yield row

Execution model - Index scan

Which index though?

for pk in Index1(predicate) + Index2(predicate):

row = get_record(pk)

if match(row, other_conditions):

yield row

Execution model - Index-merge scan

… WHERE A = “X” OR B = “Y”

Demo: Shared documents

Query optimization

“Find correct execution plan with lowest cost”

Query optimization

Logical Plan Optimization (~ Rules)

select i.name

from item i

join item_group ig

on ig.group = ig.id

where ig.name = “Products”

and i.enable = 1

for i in item:
yield i

for ig in item_group:
yield ig

for x in left:
for y in right:

if x.group == y.id:
yield (x, y)

for row in result:
if row.name == “Products”:

yield row

for row in result:
if row.enabled == 1:

yield row

for row in result:
yield row.name

scan scan

join

filter

filter

project

Projection Pushdown

select i.name

from item i

join item_group ig

on ig.group = ig.id

where ig.name = “Products”

and i.enable = 1

for i in item:
yield i.name, i.enabled, i.group

for ig in item_group:
yield ig.id, ig.name

for x in left:
for y in right:

if x.group == y.id:
yield (x, y)

for row in result:
if row.name == “Products”:

yield row

for row in result:
if row.enabled == 1:

yield row

for row in result:
yield row.name

scan

join

filter

filter

project

Predicate Pushdown

select i.name

from item i

join item_group ig

on i.group = ig.id

where ig.name = “Products”

and i.enabled = 1

for i in item:
if i.enabled == 1:

yield i.name, i.group i.enabled

for ig in item_group:
if ig.name == “Products”:

yield ig.id, ig.name

for x in left:
for y in right:

if x.group == y.id:
yield (x, y)

for row in result:
yield row.name

scan
scan

join

SubQuery - Dumb execution

select i.name

from item i

where i.enable = 1 and exists (

select *

from item_group g

where g.id = i.group

and g.name = “Products”

)

SubQuery rewrite

select i.name

from item i

where i.enable = 1 and exists (

select *

from item_group g

where g.id = i.group

and g.name = “Products”

)

select i.name

from item i

join item_group ig

on ig.group = ig.id

where ig.name = “Products”

and i.enable = 1

SubQuery rewrite - constant evaluation

select i.name

from item i

where

i.enable = 1

and item.group = (

select g.id

from item_group g

where g.name = “Products”

)

SubQuery rewrite - constant evaluation

select i.name

from item i

where

i.enable = 1

and item.group = (

select g.id

from item_group g

where g.name = “Products”

)

select i.name

from item i

where

i.enable = 1

and item.group = (

5

)

Cost based optimization

SELECT *

from `tabStock Ledger Entry`

where

item_code = ‘X’

and warehouse = ‘Y’

and posting_datetime > ‘2024-01-01’

order by `posting_datetime` desc

limit 1;

● Cardinality
● Distribution

Outline

● Storage
● Bufferpool
● Indexing (B+Tree)
● Query planner and execution
● Concurrency, locking and MVCC
● Logging and recovery

Concurrency conflicts - Unrepeatable read

Concurrency conflicts - Dirty Read

Concurrency conflicts - Lost update

ACID

Atomicity - everything happens or nothing.

Consistency - “stays correct” e.g. constraints

Isolation - Transactions are isolated from one another

Durability - If I commit, change is persisted for sure.

Basic Locking

S-Lock - Shared Lock

X-Lock - EXclusive Lock

Strict Two Phase Locking

Strict Two Phase Locking

Deadlocks

Intention Locks

Intention Locks

IS-Lock - Intention Shared

IX-Lock - Intention EXclusive

Intention Locks - Write to a tuple

IX

IX

IX

X

Intention Locks - Alter table

A-IX

A-IX

B-IX

A-IX

A-X

B-X
(Conflict)

Intention Locks - Compatibility matrix

X IX S IS

X Conflict Conflict Conflict Conflict

IX Conflict Compatible Conflict Compatible

S Conflict Conflict Compatible Compatible

IS Conflict Compatible Compatible Compatible

Practical Locking

Operation Database Table Rows

FOR UPDATE IX IX X

UPDATE/DELETE IX IX X

LOCK IN SHARE MODE IS IS S

ALTER TABLE IX X X

SELECT - - -

These locks solve everything?

select es.employee, max(es.salary)

from `tabEmployee Salary` es;

These locks solve everything?

select es.employee, max(es.salary)

from `tabEmployee Salary` es;

insert into `tabEmployee Salary`

(employee, salary)

values (“Ankush”, 40)

Locking things that don’t exist?

Employee Salary

A 10

B 25

C 30

D 39

Ankush 40

Gap locks
Employee Salary

A 10

B 25

C 30

D 39

Ankush 40

(10,25)

(39,+inf)

(-inf,10)

Practically:

“Lock everything you
read + gaps + extremes”

Gap locks
Employee Salary

A 10

B 25

C 30

D 39

Ankush 40

(10,25)

(39,+inf)

(-inf,10)

Practically:

“Lock everything you
read + gaps + extremes”

Serializable - Everything is executed as if serialized

Repeatable Reads - Txn see “snapshot” of data at start

Read Committed - Txn can read already committed data.

Read Uncommitted - Txn see uncommitted writes

Isolation Levels

MySQL default

● Every write creates a new “timestamped” version
● Every read query sees a version “as of” txn start
● MySQL keeps multiple copies of each rows
● InnoDB purges old copies when there no transaction

older than that

Multi Version Concurrency Control

MVCC + Repeatable Read Demo

● How do you think MySQLDump is consistent? `--quick`
`--single-transaction`

● Why backups slow things down?
● Why long running updates slow things down?

Practical Implications

● Performance - “snapshotting”
● New type of anomaly - “Write Skew”

Repeatable Read Problems

Write Skew in Practice

Txn A Txn B

paid_amt = sum(payment_entry.amt)
> 0

paid_amt += 10
> 10

paid_amt = sum(payment_entry.amt)
0

(Blocked because of write lock)

COMMIT paid_amt += 10
> 10

COMMIT

● User A and B create 10rs payment each

Write Skew in Practice

Txn A Txn B

paid_amt = sum(payment_entry.amt)
> 0

paid_amt += 10
> 10

paid_amt = sum(payment_entry.amt)
0

(Blocked because of write lock)

COMMIT paid_amt += 10
> 10

COMMIT

● Fix: “FOR UPDATE” bypasses snapshots

Outline

● Storage
● Bufferpool
● Indexing (B+Tree)
● Query planner and execution
● Concurrency, locking and MVCC
● Logging and recovery

Logging

● How are dirty pages written to disk?

Write Ahead Log (WAL) aka redo log

Durability = Ensure WAL is flushed to disk on commit.

Checkpointing

● Flush all dirty pages to disk
● Truncate WAL.
● During crash recovery: replay writes from last

checkpoint.

Practical Implications

● Is it safe to `kill -9` MySQL?
● Checkpointing data on monitor
● Our logging config - mariadb.cnf

https://github.com/frappe/press/commits/master/press/playbooks/roles/mariadb/templates/mariadb.cnf

Outline

● Storage
● Bufferpool
● Indexing (B+Tree)
● Query planner and execution
● Concurrency, locking and MVCC
● Logging and recovery

Practical Indexing

Go read

https://use-the-index-luke.com/

https://use-the-index-luke.com/

Questions?
Feedback?

